Варианты задач вступительных экзаменов по математике 1999 года

Каждый вариант состоял из пяти задач трех типов. Три задачи различного уровня трудности требуют знания алгебры и тригонометрии. Еще две задачи проверяют знание планиметрии и стереометрии, а также умение мыслить объемными категориями.

Продолжительность экзамена – пять астрономических часов.

Задачи

Абитуриентам, поступающим на физический факультет, в марте 1999 года предлагались варианты задач по математике 31 и 32, в июле – варианты 33 и 34. Варианты вступительных экзаменов за прошлые годы имеются в разделе Абитуриенты на сайте физического факультета НГУ в Интернете по адресу http://www.phys.nsu.ru/entrants.

Вариант 31

- 1. Решить неравенство $|x^2 5x + 4| > x 3$.
- 2. Решить уравнение $\frac{1+2\cos 2x}{\cos x} = \frac{1-4\cos^2 x}{\cos 3x}.$
- 3. Дан тупоугольный равнобедренный треугольник площади $3\sqrt{15}$. Известно, что медиана, проведенная к боковой стороне, имеет длину 6. Найти стороны треугольника.
- 4. Решить систему уравнений $\begin{cases} 2^{2 \lg x} = 5^{\lg y}, \\ 5^{\lg 5} \cdot \jmath^{\lg 4} = 2^{4 \lg 2} \cdot \varkappa^{\lg 5}. \end{cases}$
- 5. Для данного тетраэдра ABCD на лучах AC и BD выбраны соответственно точки E и F таким образом, что AE:AC=3:2, BF:BD=4:3. Через точки E, F и середину ребра AB проведена плоскость. В каком отношении она делит ребро CD?

Вариант 32

- 1. Решить неравенство $|x^2 7x + 10| < 3 x$.
- 2. Решить уравнение $\frac{1-2\cos 2x}{\sin x} = \frac{3-4\cos^2 x}{\sin 3x}.$

- 3. Дан равнобедренный треугольник площади $9\sqrt{7}$. Известно, что медиана, проведенная к боковой стороне, равна основанию треугольника. Найти длину этой медианы.
- 4. Решить систему уравнений $\begin{cases} 9^{\lg x} = 1/4^{\lg y}, \\ 4^{\lg 4} \cdot y^{2\lg 3} = 9^{\lg 9}/x^{\lg 4}. \end{cases}$
- 5. В основании пирамиды SABCD лежит параллелограмм ABCD. Точка E делит ребро CD в отношении 1:2, считая от вершины C. Точка F лежит на луче BS так, что BF:BS=6:5. Через точки E, F и середину ребра AS проведена плоскость. В каком отношении она делит отрезок AC?

Вариант 33

- 1. Решить неравенство $|x^2 2x 3| > 2x 2$.
- 2. Решить уравнение $\frac{1+2\cos 2x}{\cos 3x} = \frac{4\cos^2 x 1}{\cos x}.$
- 3. Дан равнобедренный треугольник периметра 16. Известно, что медиана, проведенная к боковой стороне, имеет длину $\sqrt{17}$. Найти стороны треугольника.
- 4. Решить систему уравнений $\begin{cases} 3^{2lgx}=7^{lg7}\,,\\ 7^{lg7}\cdot y^{2lg3}=3^{4lg3}\cdot x^{lg7}. \end{cases}$
- 5. Для данного тетраэдра ABCD на лучах AC и BD выбраны соответственно точки K и L таким образом, что AK:AC=7:5, BL:BD=4:3. Через точки K, L и середину ребра CD проведена плоскость. В каком отношении она делит ребро AB?

Вариант 34

- 1. Решить неравенство $|x^2 4x 5| < 4 2x$.
- 2. Решить уравнение $\frac{2\cos 2x 1}{\sin 3x} = \frac{3 4\cos^2 x}{\sin x}$.
- 3. Дан остроугольный равнобедренный треугольник. Известно, что медиана, проведенная к боковой стороне, имеет длину 6 и образует с ней угол величиной arccos(13/20). Найти стороны треугольника.
- 4. Решить систему уравнений $\begin{cases} 2^{2 \lg x} = 1/5^{\lg y}, \\ 5^{\lg 5} \cdot y^{\lg 4} = 4^{\lg 4}/x^{\lg 5}. \end{cases}$

5. В основании пирамиды SABCD лежит параллелограмм ABCD. Точка K делит ребро CD в отношении 3:1, считая от вершины C. Точка L лежит на луче AS так, что AL:AS=5:3. Через точки K, L и точку пересечения диагоналей основания проведена плоскость. В каком отношении она делит ребро BS?

Ответы

Вариант 31

1. $x < 2 + \sqrt{3}$ или $x > 3 + \sqrt{2}$. **2.** $x = \pm (\pi/3) + k\pi$ или $x = \pm (\pi/4) + k\pi$, $k \in \mathbb{Z}$. **3.** $2\sqrt{6}$, $2\sqrt{6}$, $2\sqrt{15}$. **4.** x = 5, y = 4. **5.** 4:3, считая от вершины C.

Вариант 32

1.
$$3-\sqrt{2} < x < 4-\sqrt{3}$$
. **2.** $x = \pm(\pi/6) + k\pi$ или $x = \pm(\pi/4) + k\pi$, $k \in \mathbb{Z}$. **3**. 6. **4.** $x = 1/4$, $y = 9$. **5**. 3:7, считая от вершины \mathcal{A} .

Вариант 33

1.
$$x < \sqrt{5}$$
 или $x > 2 + \sqrt{5}$. **2.** $x = (\pm \pi/3) + k\pi$ или $x = k\pi$, $k \in \mathbb{Z}$. **3**. 6, 6, 4. **4.** $x = 7$, $y = 9$. **5**. 7:8, считая от вершины A .

Вариант 34

1.
$$1-\sqrt{10} < x < 3-\sqrt{10}$$
 . **2.** $x = \pm(\pi/6) + k\pi$ или $x = (\pi/2) + k\pi$, $k \in \mathbb{Z}$. **3**. 10, 10, $\sqrt{22}$. **4.** $x = 1/5$, $y = 4$. **5**. 6:5, считая от вершины S .

Решения, указания

Вариант 31

1. 1) Если
$$x \le 1$$
 или $x \ge 4$, то $\left| x^2 - 5x + 4 \right| = x^2 - 5x + 4 > x - 3$, $x^2 - 6x + 7 > 0$, $x < 3 - \sqrt{2}$ или $x > 3 + \sqrt{2}$. Поэтому $x \in (-\infty, 1] \cup (3 + \sqrt{2}, \infty)$.

2) Если
$$1 < x < 4$$
, то $\left| x^2 - 5x + 4 \right| = -x^2 + 5x - 4 > x - 3$, $x^2 - x + 1 < 0$, $2 - \sqrt{3} < x < 2 + \sqrt{3}$. Поэтому $x \in \left(1, 2 + \sqrt{3}\right)$

Ответ: $x < 2 + \sqrt{3}$ или $x > 3 + \sqrt{2}$.

- 2. Легко заметить, что числители различаются только знаком. Действительно: $1+2\cos 2x=1+2\cos^2 x-1$)= $4\cos^2 x-1$. Поэтому
- 1) $4\cos^2 x 1 = 0$, $\cos x = \pm 1/2$, $x = \pm (\pi/3) + k\pi$, $k \in \mathbb{Z}$. При этом $\cos x \neq 0$, $\cos 3x \neq 0$.

2)
$$\frac{-1}{\cos x} = \frac{1}{\cos 3x}$$
, $\cos 3x + \cos x = 0$, $2\cos 2x \cdot \cos x = 0$. По-
скольку $\cos x \neq 0$, to $\cos 2x = 0$, $2x = (\pi/2) + k\pi$, $x = (\pi/4) + k\pi/2$

или $x = \pm (\pi/4) + k\pi$, $k \in \mathbb{Z}$. При этом знаменатели исходного уравнения не обращаются в нуль.

Otbet:
$$x = \pm (\pi/3) + k\pi$$
, $x = \pm (\pi/4) + k\pi$, $k \in \mathbb{Z}$.

3. Используя обозначения рисунка, по теореме косинусов для треугольников ABM и ACM имеем

$$4x^{2} = x^{2} + 36 - 12x \cos \alpha,$$

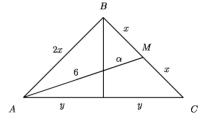
$$4y^{2} = x^{2} + 36 + 12x \cos \alpha.$$

Складывая, получаем

$$4(x^2 + y^2) = 2x^2 + 72$$
, $x^2 = 36 - 2y^2$.

Теперь используем условие на площадь:

$$\frac{1}{2} \cdot 2y \cdot \sqrt{4x^2 \cdot y^2} = 3\sqrt{15} ,$$



 $y^2(4x^2-y^2)=9\cdot 15$. Заменяя в этом уравнении x^2 на его выражение через y^2 , получим биквадратное уравнение от переменной y. Решая его, найдем y=1 или $y=\sqrt{15}$. Соответственно, $x=\sqrt{34}$ или $x=\sqrt{6}$. Треугольник ABC тупоугольный, следовательно, $AB^2+BC^2<AC^2$. Этому условию удовлетворяет только второе решение.

Otbet: $2\sqrt{6}$, $2\sqrt{6}$, $2\sqrt{15}$.

4. Если прологарифмировать оба уравнения по основанию 10, то получится система двух линейных уравнений относительно $\lg x$ и $\lg y$. Нужно выразить $\lg y$ из первого уравнения, подставить во второе и сократить на общий нену-

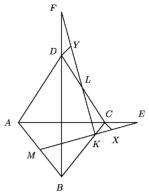
левой множитель. Получится равенство $\lg x = \lg 5$, x = 5. Ответ: x = 5, y = 4.

5. Построим последовательно точки K, X, L, Y так, что $CX\|AB$, $DY\|BC$ (см. рис.). Тогда треугольники AME и CXE подобны, треугольники MBK и XCK также подобны. Из подобия:

$$\frac{CK}{BK} = \frac{CX}{BM} = \frac{CX}{AM} = \frac{CE}{AE} = \frac{1}{3}$$
.

Теперь из подобия треугольников LDY и LCK, а также треугольников FDY и FBK получаем равенства

$$\frac{DL}{CL} = \frac{DY}{CK} = \frac{DY}{BK/3} = 3 \cdot \frac{DY}{BK} = 3 \cdot \frac{DF}{BF} = 3 \cdot \frac{1}{4} = \frac{3}{4}.$$



Ответ: 4:3, считая от вершины С.