-
   http://www.INTUIT.ru
11. :
. . . . . . . . . . . .

. . , ( , , ..). , . . .

; , , n- 2\times n-2 n^{2} .

, n\times
n, n . A(i,j)=1, i j , A(i,j)=0. A .

, , . , , , .

.


. 11.1. 

\begin{pmatrix}{0} & {0} & {0} & {1} & {0} & {0} & {0} & {0} & {0} \\
{0} & {0} & {0} & {1} & {0} & {0} & {0} & {0} & {0} \\
{0} & {0} & {0} & {1} & {0} & {0} & {0} & {0} & {0} \\
{1} & {1} & {1} & {0} & {0} & {0} & {0} & {0} & {0} \\
{0} & {0} & {0} & {1} & {0} & {1} & {1} & {0} & {0} \\
{0} & {0} & {0} & {0} & {1} & {0} & {0} & {0} & {0} \\
{0} & {0} & {0} & {0} & {1} & {0} & {0} & {1} & {1} \\
{0} & {0} & {0} & {0} & {0} & {0} & {1} & {0} & {0} \\
{0} & {0} & {0} & {0} & {0} & {0} & {1} & {0} & {0}
\end{pmatrix}


. 11.2. 

v_{i_{1}},v_{i_{2}}\dts v_{i_{n}}.

\begin{aligned} & \begin{aligned}
\,\,v_{4} &: v_{1},v_{2},v_{3},v_{5};\\
v_{5} &:v_{4},v_{6},v_{7}; \\
v_{7} &:v_{5},v_{8},v_{9};\\
\end{aligned}\\ & \left.
\begin{aligned}
v_{1} &:v_{4}; \\
v_{2} &:v_{4}; \\
v_{3} &:v_{4}; \\
v_{6} &:v_{6}; \\
v_{8} &:v_{7}; \\
v_{9} &:v_{7};
\end{aligned}
\right\} \t{ }
\end{aligned}

, , .

(v_{i},v_{j}) (v_{i},v_{j},u_{k}), . .

, (.11.1), :

(v_{1},v_{4}),(v_{2},v_{4}),(v_{3},v_{4}),(v_{4},v_{5}),
(v_{5},v_{6}),(v_{5},v_{7}),(v_{7},v_{8}),(v_{7},v_{9}).

T \{v_{1},v_{2} \dts v_{n}\}. , v_{i} i. T \{a_{1},a_{2} \dts a_{n-2}\} , : ( T: ) =

  1. n T, A n-2;
  2. B=[1:n];
  3. i 1 n-1
  4. b=\min \{ k\in B: k \text{ ---   }\};
  5. a[i] , b;
  6. B=B-\{b\};
  7. T a[i];
  8. A.

. T. P_{2}
(T)=  [2,5,5,5,6,6,10,9,10,11,13,15,15,10,13,13,13].

. B.

:

( A: ) =

  1. T \{v_{1},v_{2} \dts
v_{n}\}, , v_{i} i, n A 2;
  2. B=[1: n];
  3. i 1 n+1 ;
  4. b=\min \{ k\in B.k\ne A[j] j\ge
i\};
  5. T , b A[i];
  6. B=B-\{b\};
  7. T.

(T,z) T z. v (T,z) z v . ( L(T,z)=[l_{1},l_{2} \dts l_{n}] ) , (T,z) .

( L^{*}(T,z)), , .

. T, (.11. 2), L(T,z)=[3,3,2,4,4,3,2,2,1] , L^{*}(T,z)) =[4,4,3,3,2,3,3,2,2,1].


. 11.3. 

() t_n n {t_n = n^{n-2}}.

() 2- m n S_n = n^{m -1} m^{n -1}.

() h_{n}
=(n-2)!\suml_{k=2}^{n}(-1)^{n-k} \begin{pmatrix} {n} \\ {k} \end{pmatrix}
\frac{k^{k-2}}{(k-2)!}.

T(x)=\suml_{n=1}^{\infty }T_{n} x^{n} .

, T_{n} n .

()

T(x)=x\cdot \exp \left\{\suml_{k=1}^{\infty }T(x^{k} )/k
\right\}\!. (*)

, T(x) (*). T(x). : T(x)=x\cdot
\prod\limits_{p=1}^{\infty }(1-x^{p} )^{-T} p.

T(n) .

t(x)=\suml_{n=1}^{\infty }t_{n} x^{n}

, t_{n} n .

() t_n^{}, , T(x) t(x)=T(x){-}\frac{1}{2}
\left(T^{2}(x){-}T(x^{2})\right).

r(x) R(x) , .\medskip

(-) r(x) R(x) T(x)=x\cdot
\left(\exp \left\{\suml_{k=1}^{\infty }R(x^{k} )/k \right\}\right)^{2} r(x)= R(x) - R^2(x).

. M(G) , A(G), A(G) G, i- \deg v_{i}.

. G M(G) G.

. G (.11. 3)

A(G) = \left|\!\left|
\begin{matrix}
0 & 1 & 1 & 0\\
1 & 0 & 1 & 0\\
1 & 1 & 0 & 1\\
0 & 0 & 1 & 0
\end{matrix}
\right|\!\right|

M(G)

M(G) = \left|\!\left|
\begin{matrix}
\phantom{-}2 & -1 & -1 & \phantom{-}0\\
-1 & \phantom{-}2 & -1 & \phantom{-}0\\
-1 & -1 & \phantom{-}3 & -1\\
\phantom{-}0 & \phantom{-}0 & -1 & \phantom{-}1
\end{matrix}
\right|\!\right|.

, , a_{1,4}, 3. G (.11. 4).


. 11.3. 


. 11.4. 

. G-n- B_0 (.. n - 1 ). B^t_0 B_0. |B_0^{}
B_0^t| G.

. G A(G). M_{\rm
out}, (i,i)- {\rm
deg}^+v_i v_i. C_{\rm out}= M_{\rm out} -
A(G). C_{\rm in} = M_{\rm in} -
A(G).

. i- C_{\rm out} , G, v_i. i- C_{\rm in} , v_i.

. G (. .11.5) C_{\rm out} C_{\rm in} :

C_{\rm out} = \left|\!\left|
\begin{matrix}
2 & -1 & \phantom{-}0 & \phantom{-}0 & -1\\
\phantom{-}0 & \phantom{-}2 & -1 & -1 & \phantom{-}0\\
\phantom{-}0 & \phantom{-}0 & \phantom{-}1 & -1 &
\phantom{-}0\\
\phantom{-}0 & -1 & -1 & \phantom{-}0 & -1\\
-1 & \phantom{-}0 & \phantom{-}0 & \phantom{-}0 & \phantom{-}1
\end{matrix}
\right|\!\right|\qquad C_{\rm in} = \left|\!\left|
\begin{matrix}
\phantom{-}1 & -1 & \phantom{-}0 & \phantom{-}0 & -1\\
\phantom{-}0 & \phantom{-}2 & -1 & -1 & \phantom{-}0\\
\phantom{-}0 & \phantom{-}0 & \phantom{-}1 & -1 &
\phantom{-}0\\
\phantom{-}0 & -1 & \phantom{-}0 & \phantom{-}2 & -1\\
-1 & \phantom{-}0 & \phantom{-}0 & \phantom{-}0 & \phantom{-}2
\end{matrix}
\right|\!\right|

, , tM\܄_6q ,Iqdč:d >K !iGRɲ'Άl=8ܻu N.nMzKlj4ZF@[LFi Mc&gĢ ?4&RdޑoWz^5elYt.v F<="gMKPͤy X1