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Глава 4

ЗАКОНЫ СОХРАНЕНИЯ

Законы сохранения – это в некотором смысле альтернатива динамическому подходу.
Конечно, в принципе, динамика Ньютона позволяет решить любую задачу. Но при этом
часто возникают препятствия, которые можно разбить на два основных класса:

• Уравнения динамики могут плохо поддаваться решению, особенно для сложных
систем. Часто динамическое описание оказывается излишне детализированным.
Нас, может быть, ряд тонкостей вообще не интересует, однако мы вынуждены
всякий раз составлять большие системы уравнений и пытаться их решать.

• Динамика требует знания всех важных сил. Между тем ясно, что все существую-
щие в природе силы никогда не будут точно известны. В особенности это касается
внутренних взаимодействий в любом реальном теле.

Законы сохранения в ряде случаев позволяют избежать указанных трудностей, и прак-
тически во всех случаях – сделать хотя бы качественные, но тем не менее полезные
выводы о движении.

4.1 Замкнутые системы. Сохранение импульса

Введем понятие замкнутой физической системы. Для начала можно понимать под
этим систему, совершенно изолированную (хотя бы путем удаления от всех тел) от
любых внешних воздействий. Ясно, что практически такого выполнить нельзя. Хотя
бы малые воздействия всегда останутся. Более разумно назвать замкнутой систему, для
которой внешние воздействия в каком-то смысле малы. В каком – сейчас выяснится.

Для любой системы полный импульс P меняется под действием суммы внешних
сил F :

∆P

∆t
= F или ∆P = F∆t .

Если сумма внешних сил F мала, то незначительным будет и изменение импульса
системы ∆P за некоторое время ∆t . Тогда можно считать, что импульс сохраняется,
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то есть, если и изменяется, то пренебрежимо мало:

P (t + ∆t) = P (t) или P (t2) = P (t1) .

Это и будет закон сохранения импульса: конечный импульс системы равен началь-
ному. Разумеется, импульс сохраняется только для замкнутой системы. Видим, что
замкнутость – понятие относительное и зависит от внешней силы и времени наблюде-
ния. Так как полного равенства суммы внешних сил F нулю практически не бывает,
важно, чтобы произведение F∆t было малым по сравнению с характерными значе-
ниями импульсов тел системы. Даже маленькая сила в течение длительного времени
может заметно изменить полный импульс. Наоборот, если время ∆t мало, то и при
значительной внешней силе изменение импульса будет малым, то есть приближенно
импульс будет сохраняться. Например, часто закон сохранения импульса применяют в
задачах с коротким временем взаимодействия тел (удар, выстрел) даже при наличии
внешних сил.

Примеры.

1. Если Земля сталкивается с астероидом, то систему (Земля + астероид) можно
считать замкнутой на интервале времени порядка недели, хотя на оба тела с боль-
шой силой действует Солнце. Теперь рассмотрим эту же систему на промежутке
времени в 3 месяца. За это время импульс системы (в основном, конечно, Земли)
повернется на прямой угол и его изменение будет существенным: ∆P = P · √2 .
Тогда, конечно, систему нельзя считать замкнутой.

2. Пусть охотник, стоя в лодке, стреляет под углом α к горизонту. Какую скорость
приобретет лодка в результате отдачи?

Обычно говорят, что в горизонтальном направлении не видно внешних сил, и
горизонтальная компонента импульса должна сохраняться. Начальный импульс
нулевой, и можно написать равенство импульсов до и после выстрела:

Px( до ) = 0 = Mux + mv cos α = Px( после ) ,

откуда ux = −mvcosα/M (M – сумма масс охотника и лодки). Посмотрим,
однако, что будет с вертикальной компонентой. Время выстрела ∆t порядка
L/v , где L – длина ствола. Подставляя L = 1 м и v = 500 м/с, получаем
∆t ≈ 2 · 10−3 с. Характерный импульс по вертикали Py = mv sin α при α = 30◦

равен 0,01 · 5 · 102/2 = 2,5 кг·м/с в системе СИ. Чтобы нарушить сохранение
вертикального импульса за время выстрела ∆t , нужна внешняя сила порядка
Py/∆t = 2,5/2 · 10−3 ≈ 103 = 100 кГ. Если пренебрегать горизонтальными силами,
то с тем же основанием можно пренебречь и вертикальными: вес лодки и охотника
вначале компенсирован архимедовой силой. Поэтому лодка приобретет и верти-
кальную скорость uy = mv sin α/M , направленную вниз, а полная скорость лодки
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будет u = −mv/M 1. Затем лодка начнет погружаться, и только через несколько
колебаний (т.е. несколько секунд) она полностью потеряет вертикальный импульс
(система станет незамкнутой по вертикали). Решение, пренебрегающее вертикаль-
ной скоростью, скорее подходит для стрельбы с бронепоезда, опирающегося на
жесткие рельсы. Конечно, мы для упрощения предполагали жесткую связь лодки
и охотника.

Встречаются случаи, когда система не полностью замкнута, то есть имеется внеш-
няя сила F �= 0 , но все же сохраняется проекция импульса, перпендикулярная F .
Например, при полете тела в поле тяжести сила mg направлена вертикально, и го-
ризонтальная проекция импульса сохраняется (если пренебречь сопротивлением воз-
духа). При ударе упругого тела о стенку, если нет трения, сохраняется составляющая
импульса, параллельная стенке (сила взаимодействия перпендикулярна стенке).

Мы получили закон сохранения импульса из законов Ньютона. Однако в физике часто
нельзя однозначно разделить аксиомы и теоремы. Покажем (следуя курсу Р.Фейнмана), что
сохранение импульса естественно вытекает из симметрии взаимодействий.

Сначала рассмотрим столкновение двух одинаковых тел с оди-

Рис. 4.1.

наковыми по величине, но противоположно направленными скоро-
стями (рис. 4.1а). Пусть происходит абсолютно неупругий удар, то
есть после соударения образуется единое тело. Очевидно из сим-
метрии, что получившееся тело после удара будет неподвижным
(в исходной системе отсчета). Тогда имеем равенство

mv + m · (−v) = 0 .

Пока это просто алгебраическое тождество: справа записан результат сложения. Но можно
понимать это равенство и как закон сохранения импульса (в данном частном случае). Слева
имеем импульс системы до удара, справа – после удара (произведение массы получившегося
тела на нулевую скорость) .

Рассмотрим то же соударение в системе отсчета, которая связана со вторым телом до
удара. Для перехода в эту систему нужно ко всем скоростям прибавить v (рис. 4.1б), и
получим тождество:

m · 2v + m · 0 = 2m · v .

Отсюда видно, что масса суммарного тела должна быть суммой масс «реагентов». Только при
этом условии такое равенство выполняется в новой (и несложно показать, что в любой) системе
отсчета. Скорость же при столкновении одинаковых тел равна средней арифметической из
скоростей до удара.

Теперь пусть сталкивается тело массы 3m , движущееся со скоростью v , с неподвижным
телом m . Представим себе, что тело массы 3m составное (2m+1m) и что сначала ударяется
передняя масса 1m . Из предыдущих рассуждений понятно, что получится составное тело
массы 2m , имеющее скорость v/2 . Теперь пусть налетает со скоростью v оставшаяся масса

1На самом деле лодка толкает окружающую воду. Кроме массы M , двинется примерно такая же
масса воды. Поэтому довольно большая импульсная сила реакции воды во время выстрела появится.
Из-за нее и горизонтальная, и вертикальная скорость уменьшатся, возможно, в два раза, но не до нуля
(это означало бы жесткое закрепление лодки), но все равно ux и uy имеют один порядок величины.
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2m и образуется тело массы 4m имеющее (среднюю арифметическую) скорость 3v/4 . Опять
можно записать:

3m · v + m · 0 = 4m · 3v
4

.

Снова суммирование масс позволяет одновременно прибавить к каждой скорости одинаковую
величину и таким образом рассмотреть столкновение в любой системе отсчета. Подобные же
выкладки можно провести для любой комбинации масс. Оказывается, что сумма произведе-
ний масс тел на их скорость равна произведению полной массы образовавшегося тела на его
скорость. А это и есть закон сохранения импульса.

На первый взгляд, применение составных тел – это «неосторожный» прием. Что если тела
сплошные? На самом деле, хотя такие последовательные удары, конечно, частный случай, но
реально тела взаимодействуют отнюдь не сразу всей массой. Например, при ударе стержней по
ним от места контакта распространяется волна сжатия, и материал вовлекается во взаимодей-
ствие хоть и быстро, но постепенно. Значение закона сохранения импульса в том и состоит, что
он выполняется абсолютно независимо от деталей взаимодействия, их можно даже не знать.
«Доказать» закон, а лучше сказать – угадать его можно только для специальных частных слу-
чаев, зная что-то о взаимодействии. Окончательно же убедиться в верности закона сохранения
импульса можно только на практике.

Рассматривая изменение импульса, например, каждого из соударяющихся тел по отдель-
ности, можно прийти к необходимости введения внешних воздействий. Силу определим как

F =
dP

dt
.

Это будет второй закон Ньютона. Далее, из закона сохранения

импульса видно, что при взаимодействии пары любых тел F12 = −F21 . Тогда изменения

импульсов партнеров будут противоположны. А это уже – частный случай третьего закона

Ньютона. Конечно, все эти рассуждения требуют обобщения и опытной проверки. Сейчас эту

проверку можно считать выполненной. Достаточно представить себе изобилие действующих

механизмов. Все они подчиняются механике Ньютона.

4.2 Закон сохранения энергии

Снова рассмотрим замкнутую (или почти замкнутую) систему. Изменение энергии лю-
бой системы равно работе внешних сил:

∆E = ∆A или ∆E = N∆t .

Замкнутой можно считать систему, для которой в течение заданного промежутка ∆t

мощность внешних сил N достаточно мала. Работа, производимая внутренними си-
лами, остается в системе: она только приводит к перераспределению между видами
энергии. Как и с импульсом, получаем закон сохранения

E(t2) = E(t1)
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для замкнутой системы. Например, бросим вверх камень со скоростью V . Замкнутой
системой будет (камень+Земля). Энергия этой системы

E =
mv2

2
+ mgh ,

если не писать собственных энергий Земли и камня, не меняющихся в таком опы-
те. Кинетической энергией Земли можно пренебречь. Из закона сохранения энергии
mv2/2 + mgh = mV 2/2 . Можно найти скорость v на любой высоте в одну строчку:
v =

√
V 2 − 2gh . Легко находится и максимальная высота подъема: при v = 0 будет

h = V 2/2g . Из динамики полета этот результат получается гораздо сложнее, причем
пришлось бы находить ненужные в этой задаче зависимости h, v от времени.

Если учесть спадание силы тяжести, потенциальная энергия взаимодействия тела
с Землей U = −GMm/r . На бесконечности (реально большом удалении, то есть на
много радиусов Земли R ) U = 0 . Запишем закон сохранения энергии

mV 2

2
− GMm

R
=

mv2

2
− GMm

r
,

где r – текущий радиус, v – скорость тела на этом радиусе (обратите внимание
на знаки!) С удалением от Земли потенциальная энергия растет, кинетическая падает.
Если v упадет до нуля на бесконечности, то скорость запуска V будет называться
второй космической: V2 =

√
2GM/R =

√
2gR ≈ 11 км/с. (Первая космическая

скорость V1 – это скорость обращения на низкой орбите, когда центростремительное
ускорение V 2

1 /R = g . Видно, что V1 =
√

gR ≈ 8 км/с). Заметим, что при постоянной
силе тяжести улететь на бесконечность нельзя ни при какой скорости: потенциальная
яма mgh оказывается бесконечно глубокой. (Подробнее о потенциальных ямах мы
поговорим в п. 4.4).

Что будет, когда брошенный вверх камень упадет на Землю? И кинетическая, и
потенциальная энергия исчезнут. Можно было бы сказать, что при ударе энергия не
сохраняется. Но более плодотворным оказался другой подход. При ударе происходит
деформация и нагрев камня и места падения на Земле. Изменению температуры ока-
залось возможным сопоставить тепловую энергию, количество которой строго со-
ответствует рассеявшейся механической. В рамках механики этого доказать нельзя, и
мы пока просто примем к сведению существование тепловой энергии. Известно, что
возможен и обратный переход, когда тепловая энергия преобразуется в механическую.
На этом принципе работают тепловые двигатели, примером которых является паровоз.

Законы сохранения позволяют во многих случаях предсказать результат, не рас-
сматривая сложной динамики. Полезно в любой задаче прежде всего прикинуть, не
применимы ли здесь законы сохранения.

Задача. Почему при бросании камня можно не учитывать кинетическую энергию
Земли, хотя импульсы Земли и камня по величине одинаковы?
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4.3 Соударения тел. Внутренняя энергия системы

Особенно плодотворным оказывается совместное применение законов сохранения энер-
гии и импульса. Часто, не зная деталей процесса, только из этих законов можно сделать
важные выводы.

При всякого рода ударах, происходящих за корот-

Рис. 4.2.

кое время, лучше всего выполняется условие замкнуто-
сти системы. Рассмотрим сначала взаимодействие, при
котором кинетическая энергия не уменьшается (то есть
не переходит в другие виды). Такое взаимодействие на-
зывается абсолютно упругим.

Сначала ограничимся случаем «центрального» уда-
ра, когда тела все время движутся вдоль одной прямой.
Примером может служить лобовое столкновение сталь-
ных шаров. Пусть тело массы m1 налетает на тело массы m2 . Скорости тел до удара
v1 и v2 направлены вдоль оси x (рис. 4.2). Скорости после удара обозначим u1 и u2 .
Поскольку тела образуют замкнутую систему, а удар упругий, сохраняются импульс и
энергия:

m1u1 + m2u2 = m1v1 + m2v2 ,

m1u
2
1

2
+

m2u
2
2

2
=

m1v
2
1

2
+

m2v
2
2

2
.

Исключая u2 , можно получить очень громоздкое квадратное уравнение для u1 . Вме-
сто этого, чтобы упростить вычисления, проведем следующие преобразования. Умно-
жим второе уравнение на 2 и перенесем в левую часть члены, относящиеся к первому
телу (с индексом 1), а в правую часть – с индексом 2:

m1(u1 − v1) = m2(v2 − u2) ,

m1(u
2
1 − v2

1) = m2(v
2
2 − u2

2) .

Поделим нижнее уравнение на верхнее и получим:

u1 + v1 = u2 + v2 .

Последнее уравнение вместе с законом сохранения импульса образуют систему из двух
линейных уравнений. Эта система имеет единственное решение:

u1 =
(m1 − m2)v1 + 2m2v2

m1 + m2
, u2 =

2m1v1 − (m1 − m2)v2

m1 + m2
.

Выражение для u2 получается из u1 заменой индексов 1 на 2 и 2 на 1. Так и долж-
но быть, поскольку исходные уравнения симметричны относительно индексов. Такая
проверка на симметрию часто бывает полезна в физике.
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Но ведь исходная система сводилась к квадратному уравнению, имеющему два ре-
шения! Второе решение мы потеряли при делении уравнений. На нуль делить нельзя,
поэтому надо проверить решение

u1 = v1 , u2 = v2 .

Очевидно, что оно удовлетворяет исходным законам сохранения. Но каков его смысл?
Частицы сохранили свои начальные скорости и как будто пролетели, не замечая друг
друга.

Из законов сохранения никак не следует, что соударение обязательно произойдет.
Законы пишутся точно так же в случае, если скорости направлены вдоль одной оси, но
частицы движутся не по одной прямой. Поэтому второе решение можно истолковать
как промах. Другое истолкование – это начальное состояние (до соударения), которое
обязано удовлетворять законам сохранения. Мы видим, что второе решение, которое
часто не замечают, имеет глубокий смысл.

Рассмотрим частные случаи. Может быть, самый интересный из них – когда массы
тел равны, m1 = m2 . Тогда после удара имеем

u1 = v2 , u2 = v1 .

При абсолютно упругом соударении одинаковых тел они просто обмениваются скоро-
стями. В частности, если на неподвижный ( v2 = 0 ) бильярдный шар налетает «в лоб»
другой шар, то налетающий останавливается, а покоившийся приобретает его скорость.
Такая картина легко воспроизводится в эксперименте, несмотря на некоторую неупру-
гость удара и вращение шаров.

Другой предельный случай – соударение тела с неподвижной стенкой (которую
можно понимать как тело бесконечной массы), то есть v2 = 0 и m2 = ∞ . После
удара u1 = −v1, u2 = 0 . Интересен также обратный случай, когда тяжелая стенка
налетает на тело ( m1 = ∞, v2 = 0 ). Тогда получим

u1 = v1 , u2 = 2v1 .

Легкое тело приобретает после удара тяжелого удво-

Рис. 4.3.

енную скорость. Этот результат легко получить и из
предыдущего, если перейти в систему отсчета, где стен-
ка покоится, а затем вернуться в исходную систему.

Теперь рассмотрим более сложную задачу. Пусть
масса m со скоростью V налетает на покоящееся тело
массы M . Внутри второго тела есть пружина с коэффициентом упругости k . Если
пружина сожмется на величину x , то она зафиксируется защелкой (рис. 4.3). Энергию
сжатия пружины kx2/2 для краткости обозначим Q .
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Такая механическая система моделирует неупругий удар, который может происхо-
дить в реальных ситуациях. Запишем законы сохранения:

mV + 0 = mu1 + Mu2 ,

mV 2

2
+ 0 =

mu2
1

2
+

mu2
2

2
+ Q .

Можно получить квадратное уравнение, исключив u1 или u2 . Но полезнее опять
обходной путь. Менее громоздкие формулы получаются в системе центра масс (с.ц.м.).

Скорость этой системы Vc равна отношению полного импульса системы тел к ее
полной массе:

Vc =
mV

m + M
.

Для перехода в с.ц.м. надо отнять Vc от каждой скорости:

v1 = V − Vc =
MV

m + M
и v2 = − mV

m + M
.

Полный импульс mv1 + Mv2 в с.ц.м., разумеется, равен нулю. Импульсы тел до взаи-
модействия по величине одинаковы и равны

mM

m + M
V ≡ µV .

Комбинация масс µ = mM/(m + M) называется приведенной массой системы.
Отметим, что эта масса, характеризующая систему как целое, отнюдь не будет суммой
масс тел. Приведенная масса меньше наименьшей из масс тел, при одинаковых массах
m = M получаем µ = m/2 .

Из сохранения импульса как во время удара, так и после импульсы тел всегда будут
противоположны: p1 + p2 = 0 . Кинетическую энергию запишем через импульсы:

p2
1

2m
+

p2
2

2M
≡ p2

2

(
1

m
+

1

M

)
=

p2

2µ
.

Опять появилась приведенная масса. Подставляя начальный импульс µV , найдем пол-
ную начальную энергию системы в с.ц.м.: E0 = µV 2/2 . Теперь закон сохранения энер-
гии пишется очень просто:

p2

2µ
+ Q =

µV 2

2
.

Отсюда находим импульс и скорость каждого тела после взаимодействия:

p =
√

2µ

√
µV 2

2
− Q ,

u′
1 = −

√
2µ

m

√
µV 2

2
− Q , u′

2 =

√
2µ

M

√
µV 2

2
− Q .
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Выбор знаков ясен: направления скоростей меняются на противоположные. Для обрат-
ного перехода в лабораторную систему нужно добавить к каждой скорости Vc :

u1 =
m

m + M
V −

√
2µ

m

√
µV 2

2
− Q , u2 =

m

m + M
V +

√
2µ

M

√
µV 2

2
− Q .

Теперь рассмотрим частные случаи.

1. Q = 0 (упругий удар). Хотя Q и стоит в формулах, ничто не мешает считать
его нулевым. Скажем, скорости налетающего тела могло не хватить для продав-
ливания пружины до защелки, и пружина вернулась в исходное состояние. Тогда
получаем уже знакомые формулы

u1 =
m − M

m + M
V , u2 =

2m

m + M
V ,

следующие из решения задачи об упругом ударе при v2 = 0 .

2. Q > 0 (неупругий удар). Для этого как минимум надо, чтобы начальная кине-
тическая энергия в с.ц.м. µV 2/2 превышала Q . (Может показаться, что нужно
mV 2/2 > Q , но этого недостаточно: часть энергии налетающего тела идет на раз-
гон второго). Если масса M очень мала, потребуется огромная начальная энер-
гия mV 2/2 � Q . При малом превышении порога, то есть

√
µV 2/2 − Q ≈ 0 , обе

скорости равны Vc , а в с.ц.м. тела останавливаются. Такое решение описывает,
например, химическую реакцию, требующую затрат внешней энергии.

3. Q < 0 . Этот случай описывает реакцию с тепловыделением. Например, при тер-
моядерной реакции дейтерия и трития выделяется значительная энергия |Q| =

17,6 МэВ (17,6 миллионов электронвольт; электронвольт – удобная для атомной
физики единица энергии: 1 эВ = 1,6·10−19 Дж= 1,6·10−12 эрг). Реакция записыва-
ется так:

2D + 3T = 4He + n + Q ,

где D – ядро дейтерия (тяжелый водород с массой ядра 2), T – трития (сверхтя-
желый водород, масса 3), He – гелия (масса 4), n – нейтрон (масса 1). Поскольку
в реакции ожидается значительное выделение энергии, кинетическими энергиями
до удара вообще можно пренебречь (они порядка 10 кэВ). В этом случае меха-
ническим аналогом будет система с уже сжатой пружиной, легкое прикосновение
к которой освобождает запасенную энергию. Тогда можно считать, что мы на-
ходимся в системе центра масс. Поскольку импульсы противоположны, быстрее
летит легкая частица. Кинетические энергии продуктов p2/2m делятся обратно
пропорционально массам – в отношении 4/5 к 1/5 . Нейтрон получает основную
долю энергии – 14 МэВ , а на долю ядра гелия (α – частицы) остается 3,6 МэВ.
Заметим, что только α – частицы нагревают реакционную смесь и способствуют
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продолжению реакции, а нейтрон улетает из системы практически без взаимодей-
ствия, так как он не заряжен. Нейтроны могут использоваться для производства
изотопов в т.н. бланкете (англ.: одеяло) либо в военных целях (нейтронная бомба).

Другой пример процесса с выделением энергии – выстрел из пистолета, пушки
и пр. Основная энергия передается легкой пуле, но и оружие испытывает отдачу.
Если бы масса пистолета равнялась массе пули, то и стрелку, и его противнику
причинялся бы примерно одинаковый ущерб.

Из рассмотренной задачи видно, что не вся кинетическая энергия системы может
видоизменяться при взаимодействиях. Для произвольной системы суммарная кинети-
ческая энергия

K =
∑ mjv

2
j

2
.

Скорость центра масс V = (
∑

mjvj)/(
∑

mj) . Скорость каждой частицы представим
как сумму V + uj , где uj – скорости в с.ц.м. Получаем:

K =
∑ mjV

2

2
+

∑ mju
2
j

2
+

∑
mj(V · uj) .

Последняя сумма равна нулю (постоянную скорость V можно вынести за знак сумми-
рования, а оставшийся множитель

∑
mjuj – полный импульс, в системе центра масс

по определению равный нулю). Поэтому

K =
∑ mjV

2

2
+

∑ mju
2
j

2
.

Первое слагаемое можно истолковать как энергию движения системы как целого со
скоростью V . Эта часть энергии не зависит от взаимодействий внутри системы и не
изменяется со временем. Но она зависит от системы отсчета; ее можно сделать равной
нулю, перейдя в систему центра масс. Вторая часть называется внутренней энергией
системы и может перейти, например, в потенциальную или в тепло. Для рассмотренной
выше задачи внутренняя энергия равна µV 2/2 .

Заметим, что такие, вроде бы и примитивные, механические примеры очень спо-
собствуют пониманию даже сложных задач. Всегда полезно задачу максимально упро-
стить, чему помогают механические модели.

4.4 Движение в полях. Потенциальные кривые

При заданном силовом поле прямой путь отыскания движения – сначала найти скорость
по ускорению, а затем уже координату. Закон сохранения энергии позволяет решить та-
кую задачу «в одно действие», то есть полностью описать движение (а не только найти
характерные точки вроде максимальной высоты). Вначале проведем качественный ана-
лиз движения в заданном потенциальном поле.
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Пусть график U(x) имеет вид, показанный на рисунке 4.4. Закон сохранения энер-
гии

mv2

2
+ U(x) = E

позволяет сразу сделать полезные выводы. Полная энергия E постоянна и задана, а
кинетическая энергия положительна. Поэтому движение возможно только при условии
U < E .

Проведем на рисунке несколько возможных уров-

Рис. 4.4.

ней энергии E1, E2, E3, . При полной энергии, рав-
ной E1 , график U проходит ниже уровня энергии
в довольно ограниченной области. В этой потенци-
альной яме только и возможно движение частицы. С
приближением к стенке ямы (где U = E ) кинетиче-
ская энергия и, значит, скорость обращаются в нуль.
Частица разворачивается и идет назад; движение име-
ет колебательный характер.

Если увеличить полную энергию до E2 , то область движения расширяется. За-
метим, что справа появилась еще одна разрешенная область, в которой частица либо
сразу движется вправо, либо сначала влево, а после отражения от стенки ямы – вправо.
Попасть из одной области в другую частица не может.

Наконец, при энергии E3 (выше потенциального барьера) частица может дви-
гаться во всей изображенной области. Возможно, она уйдет на бесконечность, а может
быть, отразится от барьеров, которые на рисунке не поместились.

Очень помогает наглядно представить себе движение такая аналогия. Согнем про-
волочку точно в виде графика U(x) и поставим вертикально. Тогда потенциальная
энергия бусины, надетой на проволочку, mgh , как раз будет иллюстрировать состоя-
ние частицы в нашем поле. Уровень энергии задается начальным положением бусины:
выше она никак не поднимется. В общем, из состояния покоя потенциальная энергия
стремится уменьшиться (бусина соскальзывает ниже). Качественно движение бусины
(или шарика в яме такой формы) будет похоже на движение частицы.

Перейдем к полному решению задачи о движении частицы. Из закона сохранения
энергии находится скорость в зависимости от координаты:

v(x) =

√
2(E − U)

m
.

Поскольку v = ∆x/∆t , можно найти интервал времени для прохождения расстояния
∆x :

∆t =

√
m

2

∆x√
E − U

или dt =

√
m

2

dx√
E − U

.

Интегрируя, находим движение, правда, в виде обратной функции t(x) .
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Примеры.

1. Пусть потенциальная энергия постоянна. Без нарушения общности можно считать
U = 0 . Тогда

dt =

√
m

2E
dx , t =

√
m

2E
x , или x =

√
2E

m
t .

Поскольку E = mv2/2 , это то же самое, что x = vt . Энергетический подход по
сравнению со «школьным» в этом простом примере не дает особых преимуществ.

2. Рассмотрим тело массы m , прикрепленное к горизонтально расположенной пру-
жине жесткости k . Тогда потенциальная энергия U = kx2/2 . Выражение для
приращения времени примет вид:

dt =

√
m

2

dx√
E − U

=

√
m

k

dx√
2E/k − x2

.

Для краткости обозначим 2E/k = x0 – это максимальное отклонение массы от
положения равновесия. Для зависимости t(x) получим:

t =

√
m

k

x∫
0

dx√
x2

0 − x2
.

Чтобы найти интеграл (хотя он «табличный»), сделаем замену переменной. Пусть
x = x0 sin y . Тогда имеем:

√
x2

0 − x2 = x0 cos y ; dx =
dx

dy
· dy = x0 cos y · dy .

Отсюда окончательно получаем:

t =

√
m

k

y∫
0

x0 cos ydy

x0 cos y
=

√
m

k
y =

√
m

k
· arcsin

(
x

x0

)
.

Теперь можно найти x(t) : x = x0 sin(
√

k/m · t) . Получили колебательное
движение, чего и можно было ожидать сразу.

Значение законов сохранения выходит за пределы физики, распространяясь даже на
биологию, экономику, и т.д. Они порождают новый способ мышления, основа которого –
не динамика, а ограничения на нее. В физике же законы сохранения настолько важны,
что для любой задачи прежде всего стоит подумать, нельзя ли их применить.
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4.5 Законы сохранения и свойства пространства – вре-
мени

Рассмотрим довольно неочевидные следствия свойств пространства и времени. Оказывается,
однородность пространства тесно связана с законом сохранения импульса, а однородность
времени – с законом сохранения энергии.

Как мы выяснили в гл. 2, уравнения движения замкнутой системы частиц имеют вид

mi
dvi

dt
=

∑
k �=i

F ki ,

где mi – массы частиц, vi – векторы их скоростей, F ki – сила, действующая на частицу i со
стороны частицы k. Поскольку система замкнута, внешних сил нет. Для упрощения удобно
рассмотреть всего две частицы, движущиеся в одном измерении (вдоль оси x):

m1
dv1

dt
= F21 , m2

dv2

dt
= F12 . (4.1)

Ограничимся важным частным случаем, когда сила взаимодействия потенциальна, т.е. су-
ществует потенциальная энергия, зависящая от координат, U(x1, x2), тогда

F21 = − ∂U

∂x1
, F12 = − ∂U

∂x2
.

В этих терминах однородность пространства означает попросту, что потенциальная энергия
должна зависеть от разности координат частиц: U = U(x1 − x2). Именно в этом случае
(и только в этом) при сдвиге всей системы на некоторое расстояние потенциальная энергия
не изменяется и, значит, не изменится поведение системы. Но при такой зависимости легко
видеть, что F21 = −F12 (третий закон Ньютона). Тогда, складывая уравнения движения (4.1),
получим

m1
dv1

dt
+ m2

dv2

dt
= F21 + F12 = 0 , или

d

dt
(m1v1 + m2v2) = 0 ,

что и означает сохранение (неизменность во времени) полного импульса системы:

P = m1v1 + m2v2 = const .

Для того, чтобы рассмотреть закон сохранения энергии, запишем выражение, следующее из
уравнений динамики (4.1):

m1v1
dv1

dt
+ m2v2

dv2

dt
= v1F21 + v2F12 ≡ −

(
v1

∂U

∂x1
+ v2

∂U

∂x2

)
. (4.2)

Левая часть уравнения (4.2) – не что иное, как производная по времени кинетической энергии
системы K:

m1v1
dv1

dt
+ m2v2

dv2

dt
≡ d

dt

(
m1v

2
1

2
+

m2v
2
2

2

)
=

dK

dt
.

Теперь предположим, что потенциальная энергия не зависит от времени явно. Это не значит,
что она вообще не изменяется со временем. Например, если частицы соединены пружинкой
жесткости k, то при движении пружинка, вообще говоря, изменяет свою длину L = x2 − x1,
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из-за чего меняется и U = k(L − L0)2/2. Но это – неявная зависимость, т.е. зависимость
«через координаты», а явная могла бы выглядеть так: U = at(L − L0)2/2, где a – постоянный
коэффициент. В отсутствие явной зависимости производную U(x1(t), x2(t)) по времени можно
записать как производную сложной функции:

dU

dt
=

∂U

∂x1

dx1

dt
+

∂U

∂x2

∂x2

dt
= v1

∂U

∂x1
+ v2

∂U

∂x2
.

Именно такое выражение стоит в скобках в правой части (4.2). Поэтому имеем

dK

dt
+

dU

dt
= 0 ,

т.е. сохраняется полная механическая энергия системы:

E = K + U = const .

Условием же ее сохранения является отсутствие явной зависимости U(t), что и означает од-
нородность времени. (Если допустить явную зависимость, получилось бы равенство

dK

dt
+

dU

dt
=

∂U

∂t
�= 0 ,

т.е. энергия не сохранялась бы).

Мы использовали довольно ограничительные предположения. В действительности законы

сохранения в физике имеют более широкую область применимости. Например, для сохране-

ния импульса не обязательно даже существование потенциальной энергии: импульс прекрасно

сохраняется при столкновении пластилиновых шариков. Энергия сохраняется и в таких про-

цессах, как падение камня на песок, когда и потенциальная, и кинетическая энергии обраща-

ются в нуль. (Разумеется, в этом случае надо разумным образом обобщить понятие энергии,

включив в нее тепловую составляющую). Но важно осознать тесную связь между импульсом и

координатами, а также энергией и временем, которую мы еще будем не раз отмечать. Именно

из-за этой связи законы сохранения энергии и импульса имеют наиболее фундаментальный

характер и выполняются не только в механике, но и во всех вообще физических процессах2.

2Добавим, что есть еще один фундаментальный закон сохранения момента импульса, связанный
с изотропностью пространства, т.е. нечувствительностью к поворотам. Момент импульса рассматри-
вается в следующей главе.


